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--X V(vr) -I × = x V I + x ~ -  = P (×) 

Shedding is possible if [r" ~rl~ n (% ~(~r)-*), where n is found from the condition 

that the line y = n--x X ~(~r)-* (shown broken in Fig.5) touches the curve y = p ~) (the 
heavy line in Fig.5). 

4. The case of G ci~c~Gr init~G~ G2~fi~GZ ophir. We will evaluate the Hamiltonian on 
the singular surface. By Eq.(3.17) and the first of (3.25), we have 

H = ~ ( / - -  ~ , r  -I (/)2), i = vr-~ ( ~  _ 1) < 0 

On the singular surface, therefore, the Hamiltonian does not vanish. If the control 
process duration is not fixed, we can add to the conclusion of Sect.3 the fact that the 
Hamiltonian is continuous at the instants 0, ~ Hence the optimal control program does not 
contain intermediate thrust. It consists of apsidal tangential impulses. If the interorbital 
transition time is fixed, our analysis shows that the hypothesis of /2/ about the absence of 
intermediate thrust in problems with variable angular range is equivalent for our present case 
to continuity of the Hamiltonian at the instant of reaching the given orbit. 
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ANALYTIC SOLUTIONS OF THE HAMILTON-JACOBI EQUATION OF AN IRREVERSIBLE SYSTEM 

IN THE NEIGHBOURHOOD OF A NON-DEGENERATE POTENTIAL ENERGY MAXIMUM m 

R.M. BULATOVICH 

The existence of analytic solutions for the Hamilton-Jacobi equations of 
an irreversible system with two degrees of freedom in the neighbourhood 
of a non-degenerate maximum of potential energy is investigated. It is 
shown that these solutions define manifolds in phase space which are 
filled with trajectories which asymptotically approach an equilibrium 
position as t ~4-~ . 

Consider a mechanical system with Lagrangian 

L: R 2 {x} × R '  { x ' } ~ R ,  L = T 2-}- T ~ - -  H 

r~ = ~/~<K (~ x', z'>, T, = <V (x), x'> 
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579 

where T, is the kinetic energy of the system (K(x~ is a positive definite matrix, and <.,.> 
denotes the scalar product in Ri), Tt is a linear form representing velocities which generate 
gyroscopic forces, and H (~) is the potential energy of the system. 

Let us assume that the function ~, the coefficients of the matrix K and the components 
of the vector field V are analytic functions of the generalized coordinates z. Let the 
origin z =0 be an equilibrium state of the system (dII(0) =0) at which the potential 
energy has a non-degenerate maximum (de£ a'H (0)@x2~0). We may assume without loss of 
generality that in the neighbourhood of the origin (E denotes the identity matrix) 

K(@ = E - k -  K' (~ 
H (x) = --VI<Dx, x> + H' (x), D = diag (~12, ~2 2) 

V ( x ) = ~ z + V ' ( z ) ,  ~=I_ ~ ~I 
where the Maclaurin expansions of the coefficients of the matrix K', the function If' and 
the vector V' begin with terms that are small to order at least l, 3, and 2, respectively. 

The Hamilton-Jacobi equation corresponding to the Lagrangian L has the form 

' I ,<K- '  (z) (as lax  - v (z)), a s l o x  - v (z)> + n (z) = h ( t )  

where K -i is the inverse of K, and h is the energy constant. If S (x) is some soluti.on 
of Eq. (i) , the function --S (x) is a solution of the Hamilton-Jacobi equation for the 
Lagrangian L ---- T, -- T, -- If. A particular solution S: R 2 {x}-~ R of Eq. (I) defines in 
the phase space R' {x} X R' {y)(y is the vector of generalized momenta) an invariant manifold 

M = {(x, y): y = oSiax}, i.e., an integral curve that has a point in common with M must lie 
entirely in M. Analysing the equation y = aS/ax, one can obtain various classes of motions 
of the system. 

From the standpoint of local theory, it is interesting to consider the existence of 
analytic solutions of the Hamilton-Jacobi equation in the neighbourhood of an equlibrium 
position at an energy level which contains an equilibrium state. We shall therefore assume 
that h = 0. 

We will seek a solution of Eq. (i) in the neighbourhood of the point x = 0, as a 
series 

S= ~ Si(x), S,(x)= £ ~ '  <<' s~,a,z, x ,  (2} 

Substituting the series into (i), we obtain 

<OStlOz - -  Qx, OS210x - -  ~x> = <Dx, x> 

It can be shown that the quadratic form 

(3) 

' li°'le °°I S I =  I / '<Ax ' z> '  A='-~"+ [Icoa_ [~,[e 

e = Va+'-~', a~ =,/~(1<,>,1_+_ i~ ,1 )  
(a) 

satisfies Eq.(3), and the forms Sm (m = 3,4 .... ) are defined by the equations 

<(A - -  e )  x, as~/ax> = G~ (5) 

where Gm are known m-th -order forms. Whether Eq.(5) is solvable depends on the spectrum 
of the matrix A -- ~. The eigenvalues of this matrix are ki.2 = ~ ~ V~ 2 --~). 

If a+>l~[, the expression u,k i + u2kl does not vanish for non-negative integers ~I such 
that u, + ul = m (m =2,4 .... ). Consequently, by Lyapunov's Theorem (/i/, p.66), there 
exists exactly one form S m satisfying Eq.(5). Thus, there exists a formal solution of Eq.(1) 
as a power series (2) with quadratic part (4). 

We note that if ~ = ] ~ [, the expression ulk, + u2k2 may vanish for even m, and so 

there need not always exist a solution in the form of a power series. 

Theorem. If a+~ [m [, Eq.(1) has an analytic solution in the neighbourhood of the 
equilibrium position z=0: 

S± = i/,<A±x, x> + W ± ~); A + = - - A  ( - - o )  

where the matrix A is defined as in (4) and the Maclaurin expansions of the functions W ± 
begin with at least third-order terms. 
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In the case of a natural system (T~-0), this theorem was proved in /2/. In the case 
I ~]~ [ ~ I, I ~ I~ I ~ I, the existence of a smooth solution of Eq.(1) was proved in /3/. 

Coro~a~. Under the assumptions of the theorem, the invarlant manifolds M ± = { ( x , y )  
= OS±/Ox} are filled out by phase trajectories asymptotically approaching the equilibrium 

state as ~-+:V o~. 
The corollary is proved by substituting y ~ Kx'-~- V into the equation y = OS/O~. The 

solution S+(S -) generates a system of second-order equations with singular point x = 0 of 
the type of an unstable (stable) node or focus. Lifting the family of asymptotic tra3ectories 
x(t) to phase space, we obtain the manifolds M ±. 

We note that if a+< [ ~ I the equilibrium is stable and there are no asymptotic motions. 
For a linear system with a+ = I ~ [. the manifolds ~[± contain no asymptotic trajectories. 
In a non-linear system satisfying thls condition asymptotic tra3ectories may exist. 

Here is a simple example: K'(x) = O, D = E, H' = ~/~(Xl~ + 3x~ + 3x~x~ ~ +x,~), ~ = I, V' = 0 The 

corresponding Hamilton-Jacobi equation has a solution S = a/~(x,~ + x~) ~. It generates the 

system x/= --x,+ xa(x,~+ ~s), x,'= x,+x~(x, ~+ ~), whose singular point, as is readily verified, 
is a focus. 

To prove the theorem, it will suffice to prove the existence of an analytic solution of 
the equation 

'I,< K -~ (~x) ( O S l O x - - ~ - l V  (8.x)), OSlOx:--~-IV (~2 )>+  ~-2n  (s3:) = 0 (~) 

in the region G = {x: [x,[~.<i,~ = 1,2} for sufficiently small e. To that end we use a well- 
known technique /2/. Define Banach spaces A = (/,[I']I~) and B ~ (/,I['I]~) of functions /: ~-~ 

expressible in G as absolutely convergent power series 

/ (x) = Z aa,~,xe~'x~ ', a . . . .  ~ R 

i l l lh = ~] (~,+=,)]a~.=.l. l i l l l , =  Y, la~,[ 

Write Eqs.(6) as a functional equation F (S, e) = 0 and consider E as a map of some 
neighbourhood H of the point (S~,O)~A x ~, where Ss is defined as in (4), into B. The 
following assertions are true: 

i) S (S~, 0) = 0 and F is continuous at (S~, 0); 
2) the derivative F~' (S, ~) of E exists in H and is continuous at (S~, 0); 

3) F / ( S , , 0 )  = <(A - -  Q) x,  ~Ox>. 

We claim that the operator F/(S~, 0) has a bounded inverse. We may assume that this 
linear operator has been reduced to "canonical" form 

I kaxlO/Oxl-Fk~x20/O~2, a ~ [ ~ [  
re" ($2, O) = ] (ex, - -  gx~) O/Ox 1 _L (gxl + ex2) O/Ox~, a_ < [ ~ [ 

t exlO/Oxl-- l-(ex~-bvxl)O/Ox 2, a = ]~] 

g = ]/ i  a_2 - -  ~* ] , kl  = e + g, k2 = e - g 

Consider, e.g., the case [ a I< I (0 ] . 
a solution 

L e t  u (x) ~ B.  T h e  e q u a t i o n  F / ( $ 2 ,  0) u = v h a s  

U ~ j X  1 X2 
~=2 a,+~t=k 

in which the coefficients of the form u~ are determined from the equation 

(E(~) + g (ek)-~C~)) U(~ ~ = V(~ ) (7) 

where E(~) is the [(k + I) x (k + I)] identity matrix, C(~) is the [(k + i) X (k -~ i)] matrix 
with elements e,,_, ----- ~ _ k -- I (z ~ I, ., k), c,,+ I = L -~ I, its other elements vanishing; U(~) 
and V(~) are [(k ~-I) X I] matrices whose elements are the coefficients of the form u k and 
v~ From (7) we obtain the inequality 

% (UC~)) ~.  (ek) -1 II (E¢~ ÷ g (ek)- '  C(~)~-* II ? (V(~)  

where ll'l] is the matrix norm induced by the vector norm ~ (X) = ~[xa I. Since []Et~)l ] = ~, 
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H C(~)II =k and g/e<1, it follows that 

whence we obtain Hu[Ix•ell vH 2, c = |/(e 4- g). 

The proof for the other cases is simpler. 
Consequently, the operator Es'(S2,0 ) indeed has a bounded inverse. 
By the Implicit Functions Theorem /4/, for small 8 a unique solution S (x, e) of Eq.(6) 

exists, differing only slightly from Sj ~). This proves the existence of an analytic sol- 
ution S + of Eq.(1). Since the assumptions of the theorem are invariant when Tx is replaced 
by --Yl in the formula for the Lagrangian, this implies the existence of a second solution S. 
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A REPRESENTATION OF THE SOLUTIONS OF THE GENERALIZED CAUCHY-RIEMANN EQUATIONS 
AND ITS APPLICATIONS * 

S.V. PAN'KO 

A method of integral representations for the generalized Cauchy-Riemann 
system in terms of an arbitrary analytic function, similar to the 
well-known Whittaker-Polozhii representation /1/, is developed. The 
representation includes various well-known results as special cases, and 
the limiting case leads to the classical representation of the theory of 
a generalized axisymmetric potential. The representations established 
are used to reduce mixed problems for the system to paired equations and 
then to a Fredholm equation of the second kind. At the same time, a 
device is described for regularizing paired equations, and a case in 
which a closed solution exists is presented. 

The results are extended to a sytem of more-general form and also to 
second-order equations, whose type and dimensionality are not essential. 
It is shown that the integral operators constructed here convert the 
solution of a parabolic or hyperbolic equation with variable coefficients 
into a solution of the classical equations of heat conduction and wave 
propagation, thus furnishing an explicit representation for solutions of 
the corresponding Cauchy problems. 

The effectiveness of the approach is demonstrated with reference to 
the problem of inflow in a fissure in an inhomogeneous layer of finite 
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